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It is argued that the statistical and quantum mechanies of the solfd

represent a proper po;nt of' departure in determining the properties of
the liquid state near the fusion curve, or at high pressure but suffi-
ciently low temperature, in conformity with the views of Frenkel. On
this basis, Hudleston's equation of state is interpreted physically as
corresponding to a model of independent bond oscillatofs, with the

effect of anharmonicity for either the solid or liquid taken into account
by means of the Grineisen theory of lattice vibrations. The model yields
a derivation applying to the solid in any event, and valid approximately
for a liquid either near the crystaliization point, or at high pressure
and low temperature. In this manner, the two parameters o and B enter-
ing the corresponding law of intermolecular force are evaluated in terms
of a characteristic frequency and the Griineisen constant, respectively.
The generalization of Hudleston's cguetion to include the effect of vari-
able temperature is given; it includes a correction factor essential to
a correct result, but not appearing previously in the literature. The
Hudleston parameter B in the equation of state as derived theoretically
is expressed in terms of the Griineisen constant, explaining the insensi-

tivity of this parameter to temperature, as observed experimentally. On
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the bacis of the Debye theory for solids end an extension to liguids, a
variant form of Hudleston's equation is derived, which takes into account
coupling of the vibrations of the atoms or molecules. This result is
generalized to arbitrary temperature alsc. The Griineisen constant deter-
mined from the experimental value of B for liquid mercury is compared
with values inferred from Griineisen’'s law and from compressibility param-
eters, and reasonable agreement is found. Finally, an explicit demon-
stration is given of’ the close correspondence between Hudleston's
equation of state for a liquid and Bardeen's quantum mechanical result

for a solid, in the case of the alkali metals near fusion.

INTRODUCTION

An eguation of state given by Hudleston! has been used with

(1) L. J. Hudleston, Trans. Faraday Soc., 33, 97 (1933).

considerable success in correlating the experimental data for the pres-

sure vs. the volume in many liquids.2”% With respect to the intermolec-

(2) K. E. Bett, J. Imperial College Chem. Eng. Soc., 7, 4% (1953).

(3) K. E. Bett, P. F. Hayes, and D. M. Newitt, Phil. Trans. Roy. Soc.,

A2L7, 59 (1954).

(L) K. E. Bett, K. E. Weale, and D. M. Newitt, British J. Appl. Phys., 5,

243 (1954).

ular force law selected, Hudleston's discussion gives no physical basis
for the particular analytic form chosen, but only for the argument of the

function. The purpose of this paper is to explain the success of the




corresponding equation of state by obtaining it from a detinite physical
model. A variant form is derived which has certain theoretical advantages.

The basis of the theoretical discussion is the Griineisen theory of

lattice vibrations.>’® The success of this theory in explaining the

(5) E. Griineisen, "Hendbuch der Physik," Vol. X, Verlag Julius Springer,
Berlin, 1926, pp. 1-59.

(6) J. C. Slater, "Introduction to Chemical Physics," McGraw-Hill Book

Co., Inc., New York, N. Y., 1939, pp. 201, 222, 238, 394, u45l1.

thermal expansion of solids as the result of anharmonicity of the charac-
teristic oscillations is well known. However, Hudleston's equation has
been tested experimentally only for liquids. Since application of the
Grineisen theory to a liquid involves an extension of its domain of
validity as usually understood, a prefatory discussion of the grounds

for this extension will be given.

THEORETICAL BASIS
In Mayer's theory of cluster integrals, the distribution for which
a very large fraction of all the molecules are in one cluster corresponds

to the liquid state.” The cluster integral for this distribution is far

(7) J. E. Mayer and M. G. Mayer, "Statistical Mechanics," John Wiley and

Sons, Inc., New York, N. Y., 1940, Chapters 11, 13, 1lk.

too complicated to be evaluated directly (and in any event the correspond-

ing series diverges at the liquefaction point). Severe calculational
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Girficulties appear in the theories of Born and Green®

and of Kirkwood®

(8) M. Born and H. S. Green, "A General Kiretic Theory of Liquids,"
Cambridge University Press, Cambridze, 1949.
(9) R. W. Swanzig, J. G. Kirkwood, X. F. Stripp, and I. Oppenheim,

J. Chem. Phys., 21, 1268 (1953).

near the crystallization point. As a consequence, resort commonly is
made to free-volume or to lattice theories (of the cell or hole type)

for a 1iquid.'©® These methods entail underlying approximations restricting

(L0) J. 0. Hirschfelder, C. F. Curtiss, and R. B. Byrd, "Molecular Theory
of Gases and Liquids," John Wiley and Sons, Inc., New York, N. Y., 195k,

Chapter 4.

their range of validity, the precise nature of which has been elucidated

by Kirkwood.l?

(11) J. G. Kirkwood, J. Chem. Phys., 18, 380 (1950).

In these circumstances, one can suggest that a proper point of
departure in determining the properties of the liquid state near the
fusion curve is the statistical mechanics of the solid. This viewpoint

has been stressed particularly by Frenkel.'® He points out that fusion

(12) J. Frenkel, "Kinetic Theory of Liquids," Oxford University Press,

Oxford, 1946, Chapter III.

is accompanied by only a relatively small increase of volume, showing
that the arrangement of the molecules in a liquid near its solidification
point must be similar to the arrangement in the corresponding solid, as

regards nearest neighbors. Further, the specific heat capacity of a




liquid is only slightly greater tharn thatv of tho s0lid, in general.
I"inally, the latent heat of fusion is much smaller than the latent heat
of vaporization. More important is a fact not noted by Frenkel, that
the latent heat of fusion is small relative to the cohesive energy of
the solid. These facts imply that the cohesive forces between the
molecules decrease only slightly at fusion, corresponding to the very
slight amount by which the average distance apart of the molecules is
increased. It follows that near the solidification point, the free
energy of the liquid must be similar in analytic form to that of the
solid, as well as numerically equal in the case of the Gibbs free energy.
The conclusion follows that the equation of state of a liquid near the
melting point must be closely similar to that of the corresponding solid.
This important conclusion will be demonstrated directl& from equations
of state in the penultimate section.

The general contentions of Frenkel are supported by the evidence
from structure analyses by X-rays of liquids and solids near the fusion
temperature. These data have been sdmmarized conveniently by Darken and

Gurry.13 The over-all results of these experiments point to & loss in

(13) L. S. Darken and R. W. Gurry, "Physical Chemistry of Metals,"

McGraw-Hill Book Co., Inc., New York, N. Y., 1953, Chapter 5.

the liquid near the solidification point of the long-range order charac-
teristic of the solid but with preservation of a considerable degree of
short-range order. It is the similarity in the short-range order in the
two phases which leads to the close correspondence between many thermo-

dynamic quantities. Only a quantity, such as the rigidity, which depends



intrinsically on order of long range will e grossly different for the
two phases (even in this case gradations are possible, corresponding to
the existence of the visco-elastic solid). In general, one expects the
similarity of the liquid and solid to hold approximately so long as the
coordination numbér has & well-defined meaning.

rom the standpoint of quantum mechanics, one can consider the total
wave function decomposable in some sense into contributions from individ-
ual atoms. For a particular atom, the presence of long-range order in
the solid will result in only small overlap of its wave function with
those for distant atoms. Thus, a quantity like the internal energy will
be sensitive mainly to the near-neighbor atoms involved in the short-
range order, where the overlap of the wave functions is significant.
Because of the small change in linear dimensions at fusion, the degree
of overlap of wave functions must be very similar for the two phases.
This argument applies in the first instance at the fusion point, but
clearly implies that a liquid at high pressure but sufficiently low
temperature with state coordinates considerably removed from the fusion
curve also behaves thermodynamically in a manner similar to a solid.

It is worthy of note that the correspondence between thermodynamic

functions for the two phases near the melting point can be extended to

transport properties also. The change in electrical conductivity at

gl4

fusion has been discussed theoretically by Mot and the viscosity of

(14) N. F. Mott, Proc. Roy. Soc., Alk6, 465 (1934).

liquids near the melting point has been treated by Andrade,® taking

(15) E. N. da C. Andrade, Proc. Roy. Soc., A211, 12 (1952).




properties of the solid as a vpcint of departure. Ioth suihorc zssume
that the atoms (or molecules) oi a liquid vibrate about mean pos’tions
which are not fixed, as in a solid, but nove with a velocity smal. com-
pared to the velocity of vibration. As a legitimate first approximation,
therefore, both authors assume that the drift velocity of the equilibrium
positions vanishes, which is tantamount to viewing the liquid as a solid
in the sense of the Griineisen theory, with respect to thermal excitation.
Mott evaluates the characteristic frequency of the liquid by regarding
1t as an amorphous solid on the Debye theory, and obtains & result for
the change in electrical conductivity at fusion which is in good agree-
ment with experiment, in general. On the other hand, Andrade identifies
the characteristic frequency of the ligquid as the Lindemann frequency
appropriate to the solid at melting, to yield a result which represents
reasonably the viscosity of a liquid near the melting point.

The following derivation of Hudleston's equation applies to a solid
in the first instance. The extension to a liquid rests broadly on the
general principles enunciated by Fregkel and the discussion above, and
specifically on the models of Mott and Andrade. Thus, the atoms are
assumed to vibrate as in a solid, with the centers of vibration fixed,
as a first approximation. The derivation proceeds by evaluating the
¢ comprese the body sgainst the restoring force of these
oscillators at zero temperature. Since this method does not yield an
explicit expression for the free energy, the effect of variable tempera-

ture in Hudleston's equation is determined by means of a phenomenological
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wpat Tollcows, 1t will be assumed when

theory given by Gilvarry.

(16) J. J. Gilvarry, J. Appl. Fis., 28, 125

(1957) -

L)

(17) J. J. Gilvarry, J. Appl. Phoo., 33, 3505 (1962).

necessary that the frequency spectrum of a liquid\is of Debye form in
the sense of Mott's approximation. The treatment given goes beyond the
approximations of Mott and Andrade, in the sense that anharmonicity of
the characteristic vibrations of the liquid is taken into account on the
basis of the Grineisen theory.

Note that the cell method has points in common with the Debye
theory or the corresponding Einstein form applied to a ligquid, as

discussed by Mayer and Mayer.’

HUDLESTON'S EQUATION
Hudleston postulates a repulsive force f Dbetween two molecules as

r)eB(ro_r) (1)

= a(ro -

where r, 1is the value at zero preséure of the intermolecular distance
r, and o and B are positive constants specific to the material. For

a cubical specimen of edge length L, the pressure P 1is proportional

to f/Lz. In the literature, the corresponding equation of state

emmama
gelielfaany Gppears as

log, [IPP/(Ly - L)] = A + B(L, - L) (2)

where ILo 1is the value of L for zero pressure, and A and B are

positive constants. The parameter A can be evaluated as




A = log, (3L,Ko) (3)

10
in terms of the bulk modulus Xy for zero pressure. Note that the
values of the Hudleston parameterz A and B in ed. 2 depend on the units
used for P and L. However, the former variables enter a linear form
equated to a logarithmic function whose argument is noﬁ dimensionless,
and hence definite dimensions cannot be assigned to A and B on the
basis of eq. 2. It is common in the literature to evaluate the length L
in terms of the cube root of the ratio to a reference value of the volume
at a particular pressure and temperature, by a procedure which amounts

to regarding L (and LO) as dimensionless, in which case A and B can

be viewed as dimensionless also. In spite of these difficulties, eg. 2
has the merit that the parameters A and B can be determined readily if
a plot of the data corresponding to the two sides of the relation yields
a straight line.

The discussion given by Hudleston was frankly semi-empirical. Thus,
he failed to state whether or not he regarded r and ro in eq. 1 as
thermal averages. Further, he made no mention of an attractive force
between the molecules, nor of the fact that f of eq. 1 reverses sign

when r exceeds rge

CASE OF ZERC TEMPERATURE

To understand Hudleston's results, consider the molecules of the
liquid or atoms of the solid at zero temperature as interacting in pairs,
and assume that each such pair is independent. The two molecules in

each bond will have a characteristic frequency v whose variation with
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respeet to velume V can be specified by introducin

parameter 7y, defined by>>®
7 =<3 nv/3nV (%)

specifically for a solid and by exteasion for & liguid. To first order,
the variation with respect to volume of the Trequency of an oscillator

is then given by the definition 4 as
v = voll + 7,(Vo - V) /V5] (5)

where vy and y, are the frequency and Grinelsen parameter, respectively,
evaluated at the volume Vp corresponding to zero temperature and pres-
sure. Using reduced coordinates, one can then express the potential

energy u of a bond oscillator of variable frequency (and force constant)

as the truncated Taylor series*®

(18) J. J. Gilvarry, Phys. Rev., 102, 331 (1956).

"= PR (rg - £IL + 2y,(xo - x)/ro) (6)

in terms of the intermolecular distance r, if m 1is the mass of a
molecule.

At sufficiently low temperature, the mean thermal energy (potential
and kinetic) of an oscillator becomes small relative to u of eq. 6,
provided that the zero-point energy can be ignored in comparison with u.
The last condition is met for only very slight compressions, since v,
enters the zero-point energy linearly but appears in eq. 6 quadratically.

Hence, eq. 6 represents the total energy associated with a bénd in this

case. Since the discussion at this point is restricted to the case of
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zerc temperature, r and ro in e3. 6 Go oL necessarily represcit
averages over thermal fluctucticiz, or ensemble or time averages (at
leasﬁ in the sense of clascical statistics). They may be regarced as
coordinates of an individual oscillator.

The total potential energy u of eg. 6 yieclds the force

T = 27(21'1'11)02(1'0 - r)[l + 370(ro - I')/I'O] (7)

on differentiation. From Hudleston's expression 1, one obtains
f=a{ry - £)[1 + B(ry - r)] (8)

for ry - r small, by expansion of the exponential and retention of

terms through linear. Comparison of the two results-yields

Q
It

2r®my 2 . (9)

w
|

= 370/To (10)

waich provide a physical interpretation of the Hudleston parameters
@ and 8 1in terms of the frequency vy, and Grilneisen parameter Y0s
respectively. Thus, Hudleston's model corresponds to representing the
liquid or solid as an assemblage of independent anharmonic oscillators.
Note that the spring forming a bond is nonlinear, since the force con-
stant increases with compression, in agreement with the sense of the
variation predicted by the Griineisen theory.

The change in energy E at zero temperature of the compressed

solid or liquid from its value for zero pressure can be expressed as

E = 3Nu (11)
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i I is the nurber of atoms or molecules. The cooificient of u is
necessarily 3N, since each oscillator inirciuces a generalized coordinate
qQ =r5 - r to describe a bond, and 3N i35 ithe aumber of degrees of free-
dom (in the absence of molecular rotation). The volumes can be written
in terms of the corresponding molecular scparations as

V = eNr® (12)

- 3
Vg = clirg

(13)
where ¢ 1is a constant. For solids, ¢ is unity for a simple cubic lat-
tice, and values for other lattice types have been given by Slater.® In

the case of a liquid, ¢ obviously depends on the average coordination

number.

Differentiating eq. 11 with respect to volume, one obtains

P = 3K, [(Vo/V)¥ 3 - (v /)M 2] (14)

as the dominant contribution to the pressure, to be maltiplied by the

correction factor
L+ 37,01 - (V/v5)®] (15)

corresponding to the effect of anharmonicity. The bulk modulus Ko at

normal volume appears in eq. 1k by virtue of the expression
vo = (31/201l3/21/2n)nrl/2vol/6Kol/2 (16)

where vy 1is the normel volume per atom or molecule. The relation 16

of Gilvarry!® is essentially equivalent to the characteristic frequencies
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(19) E. lMadelung, Physik. Z., 11, 898 (102C).
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One observes that the final result for tiie pressure is independent of the
constant ¢ of eq. 12 and 13, which depends on details of the structure
of the particular solid or liguid. If B is set equal to zero in
Hudleston's equation, use of eg. 3 for A yields eq. 14 directly, when
one notes that I is proportional to VvV °.

Replacing the multiplicative correction factor 15 by the exponential

which coincides with it through linear terms, one derives

-l @) e @) o

as the formulation of Hudleston's equation in terms of P and V, rather
than P and L. TFor any temperature negligibly removed from absolute
zero, eqg. 17 is valid when P and V ‘are understood as thermal averages.
The derivation is rigorous on the basis of eq. 6 for the energy of an
oscillator, apart from the mathematical artifice of replacing a linear
form by an exponential. As a consequence of this approximation, the
constant 7, appearing in the exponential can be strictly identified as
a Grineisen parameter only if the form 17 is fitted to data corresponding
to the neighborhood of the energy minimum for the solid. If it is fitted

to data spanning a large range of pressure, 7o becomes an average
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Griuneisen pareveter. in & Zorm mnelogous o that of ez. 2, one obtains

(21) d. J. Gilvarry, Phys. Rev., 102 325 {(175.).

2/3 1/3.-1
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Thus, the constants X, and 75 0f the Hudleston equation in the form 17
can be evaluated graphically as sirply as for the case of eq. 2.

It has been shown by Druyvesteyn and Meyering22 and by Gilvarry18

(22) M. J. Druyvesteyn and J. L. Meyering, Physica, 8, 851 (19hk).

that the Griineisen parameter y for a solid (or liquid) of independent

pairs of bond oscillators is given in the general case by

7= -5 (3 mK/B n V) + 1] (19)

where K 1is the bulk modulus and T is the absolute temperature.
Application of this result to the general formulation 17 of Hudleston's

equation yields

limy = 74 (20)
P-»0

in the limit of zero pressure, consistently with the conclusion that the
constant 7y, can be identified with the Griineisen constant only for com-
pressions in the neighborhood of the energy minimum for the body. Thus,
the results agree with the identification of the correction factor 15 as

representing the effect of anharmonicity on the pressure in the
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nelghvorhiwood of this minimum. lcte thst .o 1101t 20 arises entirely
from the presence of the exponenticl factor in eg. 17.

Comparison of eq. 2 and 17 yields

B = 3(log,, e)7o/Ls | (21)
for the Hudleston parameter B in terms of the Grilneisen parameter 7o
of the solid or liquid. 3By eliminating Ly between eq. 3 and 21, one

obtains the expression

7o = 1ot B/9(108g,, €)X, (22)

o}
for the Gruneisen constant in terms of the Hudleston parameters and the
bulk modulus. Because of the difficulty already noted in the dimension-
ality of A and B, eqg. 22 is essentially a numerical relation, and one
cannot verify directly that it is consistent with the dimensionless char-
acter.of y,. However, if L and Ly 1in eq. 2 are assumed dimensionless
(as is frequently done), then B can be viewed as dimensionless likewise,

and use of eq. 3 yields the simple relation

7o = (3 log,, e)7'B (23)

which is dimensionally correct.

It has been emphasized that Hudleston's equation corresponds
rhysically to a body composed of independent bond oscillators. As such,
an artificial element enters the model, since it corresponds essentially
to an Einstein solid. It is a matter of some interest to determine the
form of the corresponding equation when coupling of the atomic or molec-
ular oscillations is included. Coupling can be taken into account in a

simple manner by means of the Debye model, in which the effect of the
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zetual atordc or molecular vidbrations is revpreseanted by acoustic

O

scillators corresponding to elastic waves propegating in the body (viewed

7,18

as a continuum). In terms of elestic nporameters, the Grineisen

parameter on the Debye theory is given by thc Slater relation®

4

7=-% 0 mEH vy, - (2k)

O

which differs from eq. 19 for a model of independent bond oscillators.

Equating this expression to zero, one obtains

P = 3K, [ (Vo/V)2/ 2 - 1] (25)

as the corresponding equation of state of an ideal harmonic body, con-
taining no anharmonic contribution to the pressure; thg corresponding
Grineisen constant is identically zero at any pressure on the basis of
the derivation. One verifies easily that inclusion of the multiplicative
correction factor 15, with 7, a constant, yields the result of eq. 20
at zero pressure when egq. 24 is applied. The artifice of replacing the
correction factor by the exponential which agrees with it through linear

terms gives

() bl @

as the analog of Hudleston's equation for the case where the effect of
coupling of the oscillations of the atoms or molecules is included in
the model. Thus, the generalization 26 of Hudleston's equétion stands
in relation to the original equation as a many-body theory does to an

independent-particle model.
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15 Lo reduce the pressure below ihet corresponding to the case of inde-

pendent bond oscillators.®~ rethor eg. 20 yields an improved fit of

(23) The two expressions agree throuzh terms of order (Vo = V)/Vy in
view of the definition of the bulk modulus, and hence the difference

appears in terms of order [(V, - V)/Vo}e.

experimental data over that provided by iudleston's equation is a moot
question. However, eg. 20 without the exponential factor coincides in

form with that obtained by Murnaghan from the linear theory of finite

24

strain. He found that the expression yielded excellent agreement with

(24) F. D. Murnaghan, "Finite Deformation of an Elastic Solid," John

Wiley and Sons, Inc., New York, N. Y., 1951, Chapter k.

experimental data for both solids and liquids. Note that the constants
Ko and 7o in eq. 26 can be evaluated graphically by writing it in a
form analogous to eq. 18. ‘

One can observe that the pressure as given by eq. 14 and 25,
without the correction factor 15, yields a vanishing contribution to
the Grlineisen parameter at zero pressure, consistently with the fact
that these forms correspond toc the harmonic contribution to the pressure.

Hence, in view of Grlineisen's law

for 7y 1in terms of the thermal expansion coefficient a (where Cy 1is

the heat capacity at constant volume) the results are consistent with



CnTioG OF purely hziuonla
oscillators) exhibits no therral cxvansion. This sitaferent con be
verified either from the virial trcorem 7or an assemblage of harmonic
oscillators, or by direct computation ol the thermal average of r - To

from u of eq. 6 on the banis ol clascienl stabistlcs (which yields

Grineisen's law with Cy = 3k, where k 1is Boltzmenn's constant).>®

CASE OF FINITE TEMPERATURE

It is clear that the preceding discussion does not yield an explicit
expression for the Helmwholtz free energy of the solid or liquid. This
lack could be remedied by using the general results of the Grineisen
theory of solids to include a thermal contribution to thermodynamic
functions.>® Instead, the effect of variable temperature in Hudleston's
equation of state will be included by a phenomenological method described
in the general case by Gilvarry,®:27 to yield a result closely similar
to that already appearing in the literature for Hudleston's equation.

Define a dimensionless parameter 1 Dby

n = Ko *(3a/3P)q (28)

where a 1is the volumetric coefficient of thermal expansion. In view

of the thermodynamic identity®>

(25) F. Birch, J. Geophys. Res., 57, 227 {1952).

na = -K~1(K/3T)p (29)

it is clear that na is the temperature coefficient of the bulk modulus

at constant pressure. Let n, and oy denote values of n and a,
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respociively, corresponding Io zerc pressure oul Gepenalnz « .omperature,
eng Lel Mg 4 oanc Vo,t reprefent values o L oand V, respectively,

2
evaiuatea at zero pressure and o 2rbitrary refercnce value t 0 of the

absolute temperature T. Thern, ithe Jomincni contribution of eq. 1k to

the pressure in the Hudleston equaticn of state becomes

« - r - 2/3 1/3
P = 3K : a Vo, e ar) Vo, [t 4
=3 o,t ©XP|- A %o AT |« \ 7 expLL~ Qg Qi/ - v expLit ag 4T
") V)

(30)

Tfor arbitrary temperature T. The argument of the exponential in the cor-

rection factor appearing in eg. 17 becomes

~1/3

ol @

directly from Gilvarry's results.

The form of Hudleston's equation for variable temperature used by
Bett,® by Bett, Hayes, and Newitt, and by Bett, Weale, and Newitt® cor-
responds essentially to eq. 30 when multiplied by an exponential with the
argument 31, but with the salient omission of the exponential factor
depending on the integral of No%o Wwith respect to temperature. As
shown by Gilvarry,2® this correction factor is essential for a correct
result. These prior discussions neglected the fact that the bulk modulus
as well as the volume must be corrected for a change in temperature.
However, it can be noted that the correction factor on the volume depend-
ing on the integral of oy with respect to temperature is dominant in

eq. 30 at low pressure over the correction to the bulk modulus represented




L1 the exponential depending on the intesrzl of P Lo resroct to
Ttenperalure. As a conseguence, only an atnrorirate value of o way be
sufliclent for adequate accuracy in the corecentation of the Gata for P.
In the integrals eppearing in these cipressions, the integra-ds Qg
and noas must correspond to zero pressurc; in this caSe, eg. 30 as it

stands is thermodynamically correct through terms of order P/Ky as
rarameter of smallness.l6 IT the paths ol integration cross the fusion
point, the integrands at this point must be understood as proportional

to delta functions, with the coefficients chosen to yield the proper change
in volume and discontinuity in bulk modulus for melting at the temperature
of fusion in guestion. Thus, t may correspond to absolute zero, and T
may represent a temperature corresponding to the liguid phase. For a
solid with a normal fusion curve, the method of determining values Qg

and 1%, oOf o and na, respectively, to correspond to zero pressure for
temperatures above the fusion value for a particular pressure has been
discussed by Gilvarry.16 It is clear'that the exponentials appearing can
be replaced by linear forms when the range of integration from t to T
is sufficiently small and does not include the fusion point. In this case,
the volume Vo r and bulk modulus Ko,7 at zero pressure but arbitrary

temperature can be written as

Vo,T = Vo, [l + ao(T - %)] (32)

Ko,

n

Ko,t[1 - noo(T - t)] (33)

respectively. If experimental data for different isotherms are plotted

to correspond to the two sides of the equation
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ln P, —2= P . XA ! = 1n(3% )+ Syl - | L (3h)
| v B e P A VA v/
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values of Yo,7 &8 determined graphically ield values of Mo directly
from eq. 33. Tebles of values of ere oveilable for solids,>»25,26

but the author is unaware of siridler corpilations for liquids.
One may note that the derivation of the argument 31 of the exponen-
tial makes use of the usual assumption that the Grineisen parameter is

independent of temperature.>”

To check consistency, one can apply eq. 19
to the generalized form of Hudleston's equation, including the effect of

temperature. One obtains

lim 7(T) = 7, (35)
P>0

as the constant limiting value of y(T) at zero pressure, independently
of the absolute temperature T. In general, therefore, the exponential
correction factor with argument 31 as applied to eg. 30, or the exponen-
tial factor in Hudleston's egq. 1, represents the effect of anharmonicity
on the pressure in the neighborhood of the minimum in the Helmholtz free

energy at arbitrary fixed temperature.27 Further, comparison of eq. 23

(27) The results are not entirely cclf-consistent, since y(T) from either
eq. 30 or the following eg. 37 shows a slight temperature sensitivity
depending on ao(T - t), which is cancelled at zero pressure by a term
depending on V, as V = Vo[l + ag(T - t)] in this limit. This difficulty

in the case of Birch's equation has been discussed elsewhere by Gilvarry.t”
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witioen. 35 ylelds
lim 7(T) = (3 logys €) ™2 (36)
0
for any isotherm. It follows from the conssancy oif 7o in eg. 23 that
the Hudleston parameter B should be indepszrdent of temperature. This
conclucion is in accord wish the exzeripoatal date of Hudleston,l of Bett,2

of Bett, Hayes, and Jewitvt, andé of lett, Weale, and Newitt.?
The foregoing argurent presupposes that the Grineisen parameter is
independent of temperature, on Grineisen's postulate that the lattice fre-

quencies of a solid are a function only of the volume.>?%® The experimen-

tal evidence on this point is conflicting for low temperatures (approaching

absolute Zero),ls but the bulk of the data for solids at normel tempera-
ture and higher do seem to indicate that 7y 1is independent of tempera-

ture,25’26

at least approximately. On a similar assumption that the
characteristic frequencies of a ligquid are a function mainly of the vol-
ume (near the solidification curve in*any event), one concludes that 7
is an approximate constant with respect to temperature. In the case of
either a solid or liquid, therefore, one obtains the experimentally veri-
fied conclusion that the parameter B in Hudleston's equation of state
ie 2 constant independently of the particular isotherm considered.

The form 26 of Hudleston's equation as generalized to include

coupling can be extended easily to include the effect of variable temper-

ature. For the dominant contribution to the pressure, one obtains

T 1/3 -

T .
P = 3Ko, ¢t exp[—u/\ % dTJ- B:X%%E eXPu/~ G d?) - lJ (37)
t t
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ecuation. In this form, the generalized ezuation of state vields the

result of eq. 35 for y at zero pressure £..i arbitrary temperature,
when eqe 24 for the Grlneisen parameter on ..c Jubye nmodel is applied.

Thus, comparison with experimental data should yield a value of the

parameter 75 iﬁdependent o1 tne particular isotherm, at least if the
it is restricted to the range of small pressure in the neighborhood of
the minimum in Helmholtz free encrgy for vhe body.

It has been noted that the pressure as given by eq. 1L and 25 in
the case of zero temperature, without the correction factor 15, yields
a vanishing contribution to the Grineisen parameter in the limit P - O,
since it represents the harmonic part of the pressure. One can show
that a similar result holds for eg. 30 or eq. 37 with neglect of the
correction factor depending on the argument 31, for the case of finite
termperature in the limit of zero pressure. Thus, the limit 35 arises
entirely from the presence of the exponential factor. Hence, in view of
Grineisen's law of eq. 27, the thermal expansion coefficient Qo 1in
eq. 30 and 37 vanishes if 7o vanishes, and the results are approxi-

mately consistent at finite temperature with the requirement that an

ideal harmonic body display no thermal expansion.Z7

COMPARISON WITH EXPERIMENT
A check on the basic validity of the derivation of Hudleston's
equation presented can be obtained by comparing values of the Griineisen

constant from eq. 22 with values obtained by other means. For this



rined the values of the Hudleston pararcier:z Tor liquid mercury o7

analysis of compression cata o7 Eric over @ pressure range of 1 to 10

kilcbars, for temperatures of O-C. and 22°C., and obtains B = 4.95. The

)

corresponding value of can Dbe obtained from eq. 23, since ettt

L =) 0 ’
treats L and L, as dimensionless; it appears as the first entry in the
last colurm of Table I. The second entry in this column was obtained by

application of Grilneisen's law oi ec. 27 to the solid at fusion.®® The

Tinal entry corresponds to Gilvarry's relation®®

1oAY
Tm =5 a¥ T, . (38)

for.the Grineisen constant T o a solid at fusion, where Xy 1is the
bulk modulus of the solid at melting, AV and L are the volume change and
latent heat of fusion, respectively, and ¢ 1is a constant which does not
differ greatly from unity. The value of T in eq. 38 has been corrected
by the subtractive constant 1/3 from that given originally,®® to corre-
spond to eq. 19 for a model of independent bond oscillators, rather than
to eq. 24 for the Debye theory.'®

The last two entries in the final column of Table I correspond to
so0lid mercury at melting and hence to a temperature of -38.9°C., whereas
the value obtained from eg. 23 refers to a temperature range from O to
22°¢. However, the results show that extension of the Grilineisen theory
to liguids yields a value of the Griineisen constant for liguid mercury

reasonably concordant with values for the solid at fusion.
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variation of 1y from Griineiscn

for three temperatures are givesn I Table II; the results for Cy were

obtained from Cp by means of the thermodynanic identity
e - 2emrm
Cy = Cp - o™V 39)

The values of ¥y appearing in the last coluwn agree with values from
Table I within limits which are casonable Tor a comparison of Grilneisen
parameters of solids, as cbvalned from 4illerent theoretical determina-

6,26

tions. Moreover, the very slow variation oif the Grineisen parameter

with temperature apparent from Table II i1s consonant with the observed
insensitivity to temperature of the Hudleston parameter B.

Grineisen constants for solids can be determined from the parameters

a and b 1in the Bridgman eguation oI state

(Vg = V)/Vo = &P - bPZ + «-- (40)

On the basis of eg. 19, one has

7o = b/a®% -1 (41)

Experimentally, the coefficient b is difficult to determine accurately.
Bett, Hayes, and Newitt® have summarized the available data on the
Bridgman parameters of liquid mercury. From the results of six investi-
gations, they find a mean value for b which appears in the first line
of Table III, with the standard deviation shown. Relatively, the error
in a is insignificant. The corresponding value of 7o with its

standard deviation is shown in the last column of the table, and one sees
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deviation) were ignored, and the eca ernd the standard deviation of the
remaining three were couputed, to yicld e sosult shown in the second

line. One sees that the corresponding value

O
k-

75 in the last column
agrees reasonably, within the limits for the standard deviation shown,
with the result of Table I.

-

The numerical agreement oodtained is by no mean

«

perfect. On the
other hand, it is essential to rezlize that exact agreement between ¥
from Grineisen's law and from eg. 19 is not demanded by theory, because
of the effect of the simplifying assumptions which enter the argument.®
Equations 23 and 41 actually yield average Grineisen parameters, since
the corresponding equations of state are fitted to data covering a finite
range of pressure. As such, the corresponding values of 75 tend to
exceed values inferred from data in the neighborhood of the energy mini-

mum or from Grineisen's law, consonantly with a behavior noted elsewhere.2?t

CORRESPONDENCE OF LIQUID AND SOLID STATES

In this section, an explicit demonstration of the close correspondence
between equations of state for the solid and liquid near the melting
point will be given.

From the results of Bett, of Bett, Hayes, and Newitt, and of Bett,
Weale, and Newitt, it is clear that liquid mercury obeys Hudleston's
equation over the temperature range O - 22°C., which is not far removed

from the absolute temperature of solidification. Although experimental
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Cs to Li, respectively, and thus fzall rezsonzsbly in the range where
Hudleston's equation has been found appilcable. Thus, an idea of the
geaneral degree of correspondence vetween thie equations of state of the
liguid and the solid near the meliing polnt can Dbe obtailned by comparing
Hudleston's equation (preswred valid for the liquid alkali metals) with

4

the theoretical and experimental resulis Tor the pressure vs. volume in

the solid alkali metals.
The equations of state for the alkali metals in the solid phase
have been calculated by Bardeen from quanturm mechanics by the Wigner-

22

Seitz method under certain approxirations. dis result for the dominant

(28) J. Bardeen, J. Chem. Phys., &, 372 (1938).

contribution to the pressure is

P = 3K [ (Vo/V)®/ 3 - (Vo /V)* 2] (42)

reguiring a multiplicative correction at the higher compressions given by

1+ [ {V/M)M® - 1] (43)

with € &a constant. Bardeen corpared his results with experimental data
of Bridgman for Cs, Rb, K, Na, and Li extending to pressures of 45 kilo-

bars and corresponding to room temperature. Excellent agreement was found,

in general, and the effect of the correction 43 was found to be small.
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reasonably near that of fusicn Zor Ho end i, c.d o & less extent Tor Na
and Li.
Factoring out VO/V in Pardecn’s oo, 42, one obbtmins

P = (Vo/V){3Kol (Vo / V)% = (Vo /W)Y 21} (L)

.

wilere the expression in braces is simply Zudleston's result for the pres-
sure, without the exponential correcticn ractor. UNow, X, and V5 repre-
sent the bulk modulus and volumevat zZero pressure, respectively, and the
discontinuity in these parameters ot the fusion point is small relative
to thelr values. Thus, Bardeen's ecuation applied to a solid alkali
metal near the fusion point ciffers from Hudleston's eguation for a
liguid alkali metal near the crystallization point only by the factor
VO/V, in which V5 can be evaluated indifferently for the solid or
liquid as a first approximation. IHowever, VO/V can be expanded in a
Taylor series as )

Vo/V=1+P/Ko + +- (45)
Trom the definition of the bulk modulus. For the alkali metals at melt-
ing, the values of Ky for the solid phase range from 2x10% to 1x10°

bar from Cs to Li, respectively.Z®72° Hence, P/Ky, does not exceed

(29) J. J. Gilvarry, J. Chem. Phys., 23, 1925 (1955).

about 10% for any alkali metal, for P up to 1 kilobar. Accordingly,
on the assumption that Hudleston's equation is valid for the liquid
alkall metals near the solidification point, it differs from the quantum

mechanical result for the solids near fusion, in analytic form and value,
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proper point of departure in inferring tic ejucstion of state Tor a ligquid
near the crystallization point.

A similar argument can be uscd to siow consistency of Hudleston's
equation for a liguid with Birch's ecuation of stete for a solid,

. 5 . o e N . 25
derived from the theory of Tinite cirain.

(30) ¥. Birch, Phys. Rev., 71, 0O (1047).

expression yields better agreement with experimental data for the alkali
metals at the very highest pressures avallable (a2bout 0.1 megabar) than

does Rardeen's result.

DISCUSSION AND CONCLUSIONS

It can be noted that all the eguations of state considered show a
certain similarity. Thus, Hudleston's eguation, this result as general-
ized here to apply to coupled vibrations, and the Bardeen and Birch equa-

Y2/3 as common elements in

tions all have a dominant binomial in (Vo/V
their analytic form. All the equations require modification of the dom-
inant binomial by a correction factor which becomes relatively important
only Tfor the higher compressions. It is worthy of note that the dominant
binomial in each case can be reduced for pressures approaching zero to
the form of eq. 25. This equation of state corresponds to an ideal har-

monic body on the Debye theory, or to the result of Murnaghan's linear

theory of finite strain.
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Pressure exceedlng scme 1ivit in the nol floiizo This
result can be shown by a sirmls =o-ument Lo The virisl theorert T
(31) J. C. Slater, J. Chem. 2avs., 1, oo/ (1033).

3 o R

5PV = Byin + 5 Epot (46)

of quantum mecharics, where Iy;,. and By are the total kinetic and
potential energies of the electrons of an atom, respectively (the thermal
motion of the nucleus is ignored). Consider the limit of very high pres-
sure where the electron distribution corresponds to a degenerate Fermi-
Dirac gas. In this limit of small volume, the kinetic and potential
energies of an electron vary as l/re and l/r, respectively, in terms of

-

some radius r of the atom. = Inserting this functional dependence into

(32) 5. J. Gilvarry, Phys. Rev., 96, 93k (1954).

eq. 45, one obtains _ :
P = ayS/® oy (¥7)

where a and b are positive constants. This result has precisely the
analytic form of the dominant contribution of eg. 42 to the pressure in
Bardeen's equation.

Evaluating the constants a and b 1in eq. 47 by requiring that the
pressure vanish and the bulk modulus have the normal value Ko when the
volume equals Vg, one obtains a heuristic derivation of Bardeen's equa-
tion. In a similar manner one can derive the egquation from the old

quantum theory of Bohr for the hydrogen atom (which is alkali-like), by
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equation and the variant involving the elTect of vibrational coupling
given here, as well as the temperature-dcveoaltent Torms obtained. At some
Pressure exceeding a limit in the order of negobars, these results nust
lose validity, since the dominant exponential bpehavior of Hudleston's
expression at high pressure does ot coincide with the result of eq. 47
demended by quantum statistical mechanics, as inferredrfrom the Thomas-
Fermi statistical atom model. Hence, the replacement of & linear form
involving the Griineisen constant by an exponential coinciding with it
through linear terms, which is the crux mathematically of the derivation

of Hudleston's eguation given here, can be valid only through an inter-

medlate range of pressure. Teller>® has hypothesized that the pressure

(34) E. Teller, Trans. American Geophys. Union, National Research Council -

National Academy of Sciences, 1937, p. Sk

in this intermediate region should vary exponentially with the change in
volume; his argument 1s based on the exponential decrease of the electron
density in the outermost part of an atom or molecule. A similar conclu-

. - . S e -
sion was reached by Levitt®® on purely empirical grounds. For low pressure,

(35) L. S. Levitt, J. Phys. Cher., 58, 573 (1954). .
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law than does the result 19 for indepenient oscillators, ior an average
talen over 19 elements in the solla state.

It is clear from the present results that Hudleston's eguation for
a liguid Tollows directly frcw the Tormal extension to this case of the
Grineisen theory of characteristic vibrations of a solid. The theory
yields an immediate explanation of the lacx of temperature dependence
observed for the Hudleston parameter B, and correlates its value with
other physical parameters of the licguid. In principle, the model coin-
cides with that adopted by Mott in treating the electrical conductivity,
and by Andrade in discussing the viscosity of ligquids. As such, the
basic idea is that a ligquid near crystallization is far more similar to
a solid than it is to a gas. The merit of simple models like the one
treated here lies in ylelding explicit if only approximately quantita-
tive results in areas where application of ilue genecral methods of Born

and Green and of Kirkwood is far too difficult.
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Tavle T: Values of Grinelzsn Cornisnis oLl SLIG lnreary
LI Grinelisen
Pararcter Phosa -C. constant
7o Sl 23 Liguid Cc-22 3.80%
v, eq. 27 Solid -38.9 2,1P
fays 2= b
Y. €3e 30 Sclic -30.G 2.9
*Value corresponding to I = 4.95 ol Zett (ref. 2). byalue of
Giiverry (ref. 26).
Table II: Temperature Variation o the Grineisen Pearameter Tor Liguid
Mercury, From Grineisen's Law
Terp. vx10% ax10* Kx10° Cp Cy
°c. /g og,-1 bar joule/g"C. joule/g°C. ”

0 7.3556 1.8145 2.550 0.1405 0.1236 2.753
10 7.3002 1.8131 2.520 0.1%01 0.1229 2.741
20 7.3882 1.8118 2.591 0.1397 0.1220 2.733

Table III: Values of Grineisen Constants for Liguid Mercury, From
Bridgman Parameters

X107 ax108

a L

Mean bar~2 bar-?t 75
or 6 1.10 £ 0.70 3.91L = 0.10 6.3 = 5.0
0T 3 0.83 = 0.31 3.91 = 0.10 L4 + 2,0
z o)

- . o b
Temperature, 25 C. Termperature, 20 C.




